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ABSTRACT 
Kawasaki disease (KD) is an inflammatory vasculitis of unknown etiology that occurs in infantile and shows 

a higher incidence in younger children. This work aimed to investigate the correlation between gene expres-

sion status and age of disease onset by integrated bioinformatics analysis. In the first step by using metaDE 

package, meta-analysis performed for three expression arrays including GSE73464, GSE18606, and 

GSE68004. In the next step, WGCNA package applied on meta-analysis results for the detection of genes in 

modules that correlate with the gender and the disease age of onset. Finally, Functional annotations of these 

genes were carried out to highlight the KD-associated molecular pathways. Our meta-analysis identifies 

2417 differentially expressed genes as the most important genes. By applying WGCNA upon these genes we 

identified a module that has a negative correlation with disease age of onset, so genes in this module show an 

important role in KD. Functional annotations revealed inflammatory pathway and immune response path-

ways to infections as the most enriched terms. Genes including, CHUK, TLR5, TICAM2, LY96, MYD88, 

IRAK4, and JAK2 identified as hub genes. Among them the role of LY96, TLR5, MYD88, and IRAK4 in 

KD had been confirmed in previous studies but for the first time we introduce TICAM-2, CHUK, and JAK2 

as genes that can have important role in KD. 
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1. INTRODUCTION 

KD is an inflammatory vasculitis of unknown etiolo-

gy that occurs in infantile and toddlers. Its main com-

plication is the development of coronary artery le-

sions (CALs) including coronary arterial dilation, 

stenosis, and aneurysms [1-3]. Kawasaki disease 

(KD) exhibits many signs such as high temperature, 

erythema which occurs in the mucosa of lips or 

mouth, alterations in the body organs, and large 

lymph nodes in the neck [4-6]. KD among Japanese 

and Japanese American children is clearly more com-

mon (265/100,000) than other populations like other 

Asian countries (51 to 194/100,000), Europe 

(8.39/100,000) or American children (20.8/100,000) 

[7-12]. To date, the etiology of KD has remained an 

undetermined question and the causative agents are 

also unexplained [13]. But, based on researchers’ 

findings, a genetic predisposition considered as a 

cause to the development of KD and also the interac-

tion of an unknown infectious source can predispose 

to this disease [14]. The observation of familial oc-

currence and raised frequency in Asian populations, 

taken together suggest the existence of a genetic basis 

[15, 16]. Associations with genetic variation in sever-

al genes such as BLK, CASP3, CD40, FCGR2A, 

IPTKC, and HLA class II have been ascertained in 

diverse populations. Also, it is known that the in-

creased risk for the development of coronary aneu-

rysms in populations with European ethnicity is cor-

related with the genetic variation in the TGF pathway 

(TGFβ2, TGFβR2, SMAD3) [17]. 

 

Heart damage is visible in a significant number of 

untreated KD patients and they can develop myocar-

dial infarction, unexpected death, or ischemic heart 

disorder from ectasia (Coronary artery aneurysms) 

[18, 19]. Early diagnosis is crucial for effective treat-

ment which results in abolition of the inflammatory 

process to reduce the risk of coronary artery aneu-

rysms (CAA) rates to approximately 5% to 10% [20]. 

CAA is the most important complication of KD pa-

tients and untreated KD children, the disease-

associated inflammation modifies the arterial wall 

which leads to CAA in 25% of them [21]. In devel-

oped countries, KD has been reported as the most 

prevalent cause of acquired heart disease in children 

[22]. KD shares certain features to other childhood 

febrile conditions, including, infectious (e.g. staphy-

lococcal and streptococcal toxic shock syndromes, 

measles and other viral illnesses) and inflammatory 

conditions which makes differential diagnosis diffi-

cult [20]. Although nowadays there are guidelines to 

assist diagnosis based on clinical signs and symp-

toms, such as echocardiography, and laboratory varia-

bles, rapid diagnosis of KD from other mimicking 

conditions for treatment and impediment of CAA de-

velopment remains a momentous mission [23]. 

 

 Recently, analysis algorithms for the meta-analysis 

of array data and differential co-expression network, 

advanced and implemented to study the expression 

data of genes and microRNAs [24-26]. There is a new 

functional strategy in systems biology, the weighted 

gene co-expression network analysis (WGCNA) al-

gorithm, which identifies the most important genes in 

co-expressed genes that are associated with a sample 

trait [27, 28]. WGCNA makes modules, sub-network 

regions, based on similarities in expression profiles of 

samples,  and detects associated genes [29, 30]. By 

analysis of these modules in two different conditions, 

healthy control against disease samples, we aimed to 

identify gender and age of onset -related genes that 

may represent potential diagnostic biomarkers as well 

as therapeutic targets with clinical utility. 

 

2. MATERIALS & METHODS 

2.1. Expression array datasets and primary pro-

cessing 

Three expression datasets including GSE73464, 

GSE18606, and GSE68004 in total studied for gene 

expression of 86 controls 194 patients. These data 

sets obtained from GEO NCBI at https://

www.ncbi.nlm.nih.gov/geo by searching Kawasaki 

disease and Homo sapiens in the query line. 

GSE73464 and GSE68004 are produced using Illumi-

na HumanHT-12 V4.0 expression beadchip and in-

cluded 77 healthy and 154 disease samples. To nor-

malize these datasets, quantile normalization method 

in limma package was used. GSE18606 produced 

using Agilent-014850 Whole Human Genome Micro-

array 4x44K G4112F and included 9 healthy and 40 

disease samples. To normalize this dataset quantile 

https://en.wikipedia.org/wiki/Lymphadenopathy
https://en.wikipedia.org/wiki/Lymphadenopathy
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normalization method in limma package was used 

too. For better results, we included only single meas-

ure of each gene by the aggregate function in the 

S4Vectors package, which gives an average measure 

of the probes of each gene.  

 

2.2. Quality control, comparability and detection 

of outlier samples 

By metaQC [31] package quality of datasets are as-

sessed and samples that have low quality removed 

from the rest of analysis, p-value cutoff 0.05 was used 

for the selection of differentially expressed genes, and 

p-value cutoff 0.05 was used for the selection of path-

ways by metaQC package. To evaluate the compara-

bility of control and disease samples, soft Connectivi-

ty function in WGCNA package was used. Soft 

Connectivity evaluates two factors, 1) correlation of 

expression level of each gene between two datasets, 

2) correlation of connectivity of each gene between 

two datasets. The datasets are comparable if two 

mentioned correlations are positive and have signifi-

cance p.value. To remove outlier samples, standard-

ized connectivity (Z. K) method used and samples 

which had Z. K score< −2 deleted from the rest of the 

analysis. 

 

2.3. Meta-analysis and detection of significant 

genes 

Fisher method in metaDE package was used to recog-

nize significant genes. FDR cutoff 0.001, used to ac-

cess the most important genes in this study. 

 

2.4. Network construction and module detection 

by WGCNA package 

The results of metaDE set as input for WGCNA pack-

age. The disease dataset of GSE73464 used as the 

main dataset for the rest of analysis. One weighted 

gene co-expression networks according to disease 

samples was made. Using pickSoftThreshold function 

that helps to choose proper soft-thresholding power, 

we selected soft thresholding power of 6 for provid-

ing scale-free topology fit index that reaches values 

above 0.9. After calculation of adjacencies, to mini-

mize the effect of noise and spurious associations, 

adjacency results transformed to Topological Overlap 

Matrix (TOM), then scaling of Topological Overlap 

Matrices was used to mitigate the effect of different 

statistical properties. We used Quantile-quantile plot 

of the TOMs in the dataset to see what scaling is 

achieved. Results of TOM set as input to produce 

dendrogram of genes. CutreeDynamic function used 

for branch cutting. Minimum module size of 30, and 

the module detection sensitivity deep Split 2 in block-

wise Consensus Modules function were used for net-

work construction.  

 

2.5. Identification of clinically significant modules 

and functional annotation 

Module membership (MM) and gene significance 

(GS) for evaluating correlation between genes and 

traits were measured.  GS is the correlation between 

genes and traits and MM is the correlation of the 

module eigengene and gene expression profile. By 

measuring MM and GS, we can identify modules 

with high module membership as well as significant 

genes related to gender and age of onset. We also 

evaluated the correlation between GS and MM for 

genes in modules with high module membership in 

which central genes considered as the most important 

elements of the module associated with the trait. 

 

2.6. Detection of hub genes and their functional 

annotations 

Within detected module, hub genes were screened 

according to criteria   cor.geneModuleMembership > 

0.8 and cor.geneTraitSignificance > 0.25. Next we 

carried out functional enrichment analyses of known 

genes in order to facilitate the interpretation of the 

biological mechanisms related to these genes. KEGG 

and STRING databases used to functional and biolog-

ical interpretation of detected genes, using the KEGG 

database, important signaling pathways with P.value 

< 0.05 and combined score > 10 were identified. PPI 

network of detected genes was constructed by Search 

Tool for the Retrieval of Interacting Gene 

(STRING10.5; https://string-db.org/) with a com-

bined score >0.4 as the cut-off point. The coexpres-

sion network of the genes was constructed by Cyto-

scape software[32]. 

 

 

 

https://string-db.org/
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3. RESULTS 

3.1. Quality control, comparability and detection of 

outlier samples 

The quality of the datasets was examined using MetaQC 

package.  According to the results of the metaQC pack-

age and especially SMR score, we decided to keep all 

selected datasets in the process of analysis (Table. 1). 

Dataset comparability evaluated by the soft Connectivi-

ty function that provides positive correlation values 

when there is a high comparability between control and 

disease datasets for each expression array. Our datasets 

were comparable as the overall gene expression correla-

tion for GSE73464 was (cor=0.99, p<1e−200), the over-

all gene expression correlation for GSE68004 was 

(cor=0.98, p<1e−200) and for GSE18606 was 

(cor=0.72, p<1e−200) (Fig.1). After selecting 

GSE73464 as the final dataset for WGCNA package 

analysis, based on standardized connectivity (Z. K) 

method, 3 outlier samples removed from this dataset. 

Figure 3A shows the correlation between clinical traits 

and the sample dendrogram depicted for the disease 

dataset of GSE73464. 

 

3.2. Meta-analysis and detection of significant genes 

The results of MetaDE package, a heatmap that present 

up and down regulated genes is summarized in Figure 2. 

2417 DEGs using FDR cutoff 0.001 detected from 

which 930 are upregulated and 1487 are downregulated. 

These genes set as input for WGCNA package. 

Figure 2: Hierarchical clustering heat map of samples 
from control-patients.  The gene expression heat map of 
the 2417 differentially expressed genes for the control-
patient groups. Red and green indicate high and low ex-
pression in samples. 

Table 1: quality control of three datasets using metaQC package. . IQC, internal quality control; EQC, external quali-
ty control; CQCg, consistency quality control of gene; CQCp, consistency quality control of pathway; AQCg, accura-
cy quality control of gene; AQCp, accuracy quality control of pathway, SMR, standardized mean rank. 

datasets Groups IQC EQC AQCg AQCp CQCg CQCp SMR 

GSE73464 Control-patient 5.615 6.52 248.5 5.622 568.6 410 1.5 

GSE68004 Control-patient 3.3 3.594 204.5 24.77 454.4 410 2.25 

GSE18606 Control-patient 5.615 5.661 68.24 1.161 94.86 410 2.5 

A B 

Figure 1: correlations and the p-values between control and disease datasets for (A) GSE73464, (B) GSE68004 
and (C) GSE18606. As it is clear correlations and the p-values for all datasets are positive and significance. 
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Figure 3: (A) Clustering dendrogram of samples 
based on their Euclidean distance for GSE73464 dis-
ease dataset. (B) Clustering dendrogram of genes, 
with dissimilarity based on topological overlap, to-
gether with assigned module colors for disease da-
taset. 

3.3. Network construction and module detection 

by WGCNA package 

The KD dataset related to GSE73464 exhibited a 

scale-free topology as the power was set to 6 and 

the Scale-free Topology Fit Index reached values 

above 0.9 for low powers (< 30). . This also shows 

that the batch-effects was not present in our dataset 

(Fig.4).  For module identification, weighted gene 

co-expression networks constructed  for this da-

taset.  Based on the WGCNA package, a module is 

a group of strongly co-expressed genes, these genes 

have similar biochemical and functional properties 

or belong to similar pathways. By hierarchical clus-

tering, 8 modules identified for the KD dataset, 

these modules have different sizes in terms of the 

number of genes which are labelled by the different 

colors and shown in figure 3B. 

Figure 4: Analysis of network topology for various 

soft-thresholding powers.  

 

3.4. Identification of clinically significant mod-

ules and functional annotation 

To identify modules that are significantly associat-

ed with the measured clinical traits (Age of onset, 

Gender), we used Module-trait association plot. 

The analysis identifies several significant module–

trait associations. As it can be seen from the plot, 

the best correlation exists between age of onset and 

the yellow module (Fig. 5A). We quantified associ-

ation between genes of the yellow module and age 

of onset by measuring GS and MM (Fig. 5B). A 

heatmap was made to analyze the interaction be-

tween 8 modules, the heatmap can depict adjacen-

cies or topological overlaps, with light colors de-

noting low adjacency (overlap) and darker colors 

higher adjacency (overlap) (Fig. 5C). we used plot 

Eigengene Networks function in WGCNA package 

to generates a summary plot of the eigengene net-

work and also add a clinical trait (Age of onset ) to 

the eigengenes to see how the traits fit into the 

eigengene network (Fig. 5D). 

B 
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3.5. Identification of hub genes and functional 

analysis  

We find yellow module as the most important one in 

correlation of KD and age of onset, genes related to 

the yellow module can be seen in Table 2. According 

to the results of KEGG database analysis, the most 

important signaling pathways related to the genes of 

yellow module are shown in Figure 6A, the cenplot 

that shows the relation between signaling pathways 

and yellow module genes are shown in Figure 6B. We 

set out to identify hub genes with the highest module 

membership scores according to the criteria 

cor.geneModuleMembership > 0.8 and 

cor.geneTraitSignificance > 0.25 in yellow module, 

then to identify the most significant clusters of the 

hub genes, PPI network was constituted by STRING 

as shown in Figure 7. Genes like CHUK, TLR5, TI-

CAM2, LY96, MYD88, IRAK4, and JAK2 are the 

most interacted genes which are identified as hub 

genes.  

Figure 5: Identification of modules associated with the clinical traits: (A) Heatmap of the correlation between 

module eigengenes and clinical data. The yellow module was significantly correlated with age. (B) Scatter plot 

of module eigengenes in yellow module. (C) Interaction relationship analysis of co-expression genes. Different 

colors of horizontal axis and vertical axis represent different modules. The brightness of yellow in the middle 

represents the degree of connectivity of different modules. (D) Module eigengene dendrogram and eigengene 

network heatmap summarize the modules yielded in the clustering analysis. 

Table 2: the list of genes identified in yellow module related to KD 

Module genes 

Yellow SCO2, WAC, ZFP36L1, KDM3B, SPG11, PJA2, SYNJ1, ZNF281, PARP9, NT5C2, UBQLN2, RFWD2, 
SUMO1P3, WDR51B, RAB33B, FEM1C, KBTBD7, MTMR6, TMEM71, FAM45A, CYB5R4, TLR5, 
HMGCR, WDR26, JAK2 , GOLPH3, TP53INP1, STXBP5, SLK, IRAK4, TMEM188, NIN, SCYL2, 
PAPD4, USP15, TLE4, CCDC128, AADACL4, MIER1, FBXO30, CHUK, FCHO2, SMNDC1, USP6, 
SEL1L, PTPN12, CMTM6, OSBPL11, PCMT1, RHOT1, LY96 , VCPIP1, ZFYVE16, MTHFD2, RP5-
1022P6.2, BAZ2B, DCP2, LYPLA1, SLC16A6, RAB11A, ZMPSTE24, IPO11, ZEB2, CNIH4, IFRD1, 
TICAM2, MyD88 



Sajjad Esmaeili et al. 

———————————————————————————————————————————————————

WWW.SIFTDESK.ORG 398 Vol-4 Issue-2 

SIFT DESK  

Figure 6: Functional enrichment analysis of yellow module: (A) KEGG pathway analysis of all genes in yel-
low module. (B) cnetplot of all genes in yellow module that depicts the linkages of genes and most important 
signaling pathways. 
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4. DISCUSSION 

KD is one of the rare diseases that can become very 

serious and deadly due to the involvement of human 

inflammatory pathways and blood vessels [1, 18]. It 

is important to note that KD is seen only in people of 

a low age and its prevalence in Asia is higher than in 

other parts of the world. According to studies in the 

field, inflammatory pathways are activated in innate 

immune cells. Studies have shown that inflammatory 

pathways are activated in innate immune cells and 

stimulate pro-inflammatory cytokines such as TNF-β. 

In this regard, there have been studies that target 

these signaling pathways and genes that have influ-

enced the course of the disease. However, the disease 

is still considered pathologically unknown [1, 33, 

34]. In this study by selecting three datasets that all 

of them evaluate the difference of expression be-

tween control and disease samples, the correlation 

between DEGs and Age of onset of KD explored. At 

first step, it tried to identify the most important genes 

by metaDE package. We identified 2417 DEGs in 

two up and down regulated groups. Because of high 

quality and much number of disease samples, 

GSE73464 dataset selected for the rest of the analy-

sis, so expression status of DEGs in disease samples 

of the mentioned dataset used as input for WGCNA 

package, we also considered age of onset and gender 

of disease samples as clinical data in our analysis. As 

seen in figure 3-A, the most valuable correlation be-

tween clinical traits and detected modules is a nega-

tive association between age of onset and yellow 

module. It seems genes in yellow module play an 

important role in disease with early age of onset. We 

constructed modules and subgrouped regions based 

on similarity in expression profiles of samples and 

gene links using WGCNA method. These modules 

are designed to identify the strong relationships with 

the onset and development of KD so that they can be 

used disease treatment. According to Figure 3, the 

yellow modulus was considered as a module with 

high association with the disease. All 67 yellow mod-

ule genes are listed in Table 2. The genes with the 

highest module membership scores and also with the 

most number of interactions with other genes related 

module considered hub genes of that module. Enrich-

ment was then carried out on the basis of signaling 

pathways (by KEGG pathways; https://

www.genome.jp/kegg/pathway.html) and protein-

protein interactions (PPI) by STRING software. 

 

Figure 7: The PPI network of detected hub genes that was analyzed by String software. Genes like CHUK, TLR5, TI-
CAM2, LY96, MYD88, IRAK4, and JAK2 have important role in this network. 
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Finally, 7 of these genes including CHUK, JAK2, 

TLR5, TICAM2, LY96, MYD88 and IRAK4 were 

selected because of the high score. MYD88 (Myeloid 

differentiation primary response 88) is involved in 

the signaling pathway within the immune cells as an 

adapter, it activates transcription factor NF-κB by 

TLRs and IRAKs [35, 36]. One study found that the 

activation of MyD88-dependent inflammatory signals 

in macrophages and vascular cells led to a negative 

effects on KD [37]. MYD88 also activates pro-

inflammatory cytokines such as TNF-α by activating 

the TLR4-MYD88 signaling pathway [38]. TLR5 

(Toll-like receptor 5) have been found to be involved 

in the onset of many diseases, such as inflammatory 

bowel disease [39],. TLR5 is present in the cell mem-

brane and through MYD88 and IRAK4, it activates 

the innate immune system and secretes cytokines 

such as TNF-α [40-42]. One study showed that the 

Toll-like receptor family, including TLR5, was up-

regulated in KD [43].  

 

LY96 (lymphocyte antigen 96) as called myeloid dif-

ferential protein-2 (MD-2) along with TLR5 is in-

volved in the regulation of TNF-α and nuclear factor-

κB signaling pathway [44, 45]. 

 

JAK2 (Janus kinase-2) is a non-receptor tyrosine ki-

nase involved in cytokine receptors signaling path-

ways such as interferon receptors, and GM-CSF re-

ceptor family. Past studies have shown that JAK2 has 

been implicated in many diseases, such as leukemia 

[46] and myelofibrosis, but has not been reported in 

KD [47]. CHUK (Conserved helix-loop-helix ubiqui-

tous kinase), also called IKKα, is a nuclear factor-κB 

transcription activator, and it leads to stimulates lipo-

genesis in the context of hepatitis C virus infection 

[48]. Also it is involved in signaling pathways of the 

MAPK, adipocytokine, PI3K-Akt, and mTOR associ-

ated with lipid metabolism, but has not been reported 

in KD [49]. 

 

 TICAM-2 (TIR-containing Adapter Molecule), also 

called MYD88-4 or TIRP involved in toll receptor 

signaling. One study concluded that TICAM-2 is in-

volved in the process of INF-B production through 

TICAM-1 [50].  

Our results shows that LY96, TLR5, MYD88, and 

IRAK4 genes are important in KD etiology. On the 

other hand, TICAM-2, CHUK, and JAK2 genes are 

the first to be reported in relation to KD. According 

to the purpose of the study, these genes are predicted 

to play a critical role in the onset and development of 

KD and can be potential target in the therapeutic pro-

cess. Finally, this study should be substantiated by 

evaluating the expression levels of these genes and 

proteins in clinical samples. 

 

5. CONCLUSION 

In this study for the first time, correlation of several 

genes with Kawasaki disease in earlier ages detected, 

these genes are TICAM-2, CHUK, LY96, TLR5, 

MYD88, IRAK4 and JAK2. This information helps 

understand the molecular mechanism and treatment 

of KD. 
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